

Review

Molecular mechanisms underlying suppression of lymphocyte responses by nonsteroidal antiinflammatory drugs

S. Rossi Paccani, M. Boncristiano and C. T. Baldari*

Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena (Italy),
Fax: + 39 0577 234476, e-mail: baldari@unisi.it

Received 8 October 2002; received after revision 5 November 2002; accepted 6 November 2002

Abstract. Initially identified and further developed as inhibitors of cyclooxygenases, nonsteroidal antiinflammatory drugs (NSAIDs) have been more recently shown to bind to and act as agonists of the peroxisome proliferator-activated receptor family of transcription factors. Here

we summarize the current knowledge on the functions of the principal targets of NSAIDs and review their role in T and B lymphocytes, with a focus on the molecular mechanisms underlying the effects of NSAIDs on lymphocyte development, activation, differentiation and death.

Key words. COX; PPAR; p38 MAP kinase; prostaglandin; transcription factor; immunosuppression; thymic development; apoptosis.

Introduction

Since the active principle responsible for the long-known antiinflammatory properties of the bark of the willow was first identified in 1829 as salicylic acid, salicylates, and later other compounds capable of interfering with the activity of cyclooxygenases (COXs), have become the drugs of choice for the treatment of inflammatory diseases. These drugs, collectively referred to as nonsteroidal antiinflammatory drugs (NSAIDs), are currently used in clinical practice not only in the treatment of acute inflammation but also for the pharmacological management of chronic inflammatory diseases such as osteoarthritis and rheumatoid arthritis. Furthermore, with a better understanding of the multiple and multifaceted functions of COXs, paralleled by the development of second-generation NSAIDs with markedly reduced side effects, the range of applications of NSAIDs has been extended to pathologies as diverse as prevention of myocardial infarction and thrombosis, and treatment and chemoprevention of colon cancer. The importance of NSAIDs in

human health has stimulated an impressive amount of research on the cellular and molecular targets of these drugs, which has resulted in a wealth of information on the role of COXs and their products, prostaglandins and thromboxanes, not only in the responses of the organism to external challenge but also in key homeostatic functions. Here we shall review the activities of NSAIDs on lymphocytes and what NSAIDs have revealed about the role of COXs in the physiology of these cells.

COXs: the molecular targets of NSAIDs

Structure and activities of COXs

COXs, also known as prostaglandin H synthases or prostaglandin endoperoxide synthases, catalyze the rate-limiting step in the biosynthesis of prostaglandins (PGs) and thromboxanes from arachidonic acid (AA), which is released from membrane phospholipids by phospholipase A₂ (PLA₂). The first reaction involves oxidation and cyclization of AA to yield the hydroperoxide endoperoxide PGG₂ (cyclooxygenase activity), followed by its reduction to PGH₂ (peroxidase activity). PGH₂ is subse-

* Corresponding author.

quently converted by specific cellular synthases to biologically active products, which include the prostaglandins PGD₂, PGE₂, PGF_{2α}, PGI₂ and the thromboxane TXA₂. The half-lives of most prostanoids are extremely short due to the activity of inactivating enzymes or to nonenzymatic catalysis, resulting in their conversion to either inactive derivatives or products with different biological activities, such as the cyclopentenone prostaglandin 15-deoxy-Δ¹²⁻¹⁴-PGJ₂ (15-d-PGJ₂) (fig. 1).

There are two COX isoforms, COX-1 and COX-2, which are highly related both in structure and in enzymatic activity. Both are homodimeric heme-containing proteins, characterized by ~70-kDa monomers anchored to the luminal side of the endoplasmic reticulum and comprising three distinct domains: a domain with homology to the

epidermal growth factor at the N terminus, a central amphipathic domain responsible for tethering to the membrane and C-terminal globular catalytic domain. The COX active site lies within a narrow hydrophobic channel that also includes the binding site for AA, which is directly released from the lipid bilayer into this location through the activity of PLA₂. This channel is also the NSAID binding site. The amino acid sequences implicated in AA binding and catalysis are almost identical in COX-1 and COX-2, with the exception of two isoleucine-to-valine substitutions at positions 434 and 523 in COX-2. Because of the smaller size of valine compared with isoleucine, these substitutions result in a larger and more flexible hydrophobic channel. This property has formed the basis for the development of COX-2-selective NSAIDs, which are

Figure 1. Biochemical pathway of PG biosynthesis and downstream targets. The pathway of prostanoid biosynthesis from membrane phospholipids is schematized on the top part of the figure. The principal proinflammatory stimuli promoting COX-2 expression are indicated. Different PG synthases are responsible for the production of TXA₂, PGE₂, PGI₂, PGF₂ and PGD₂. 15-d-PGJ₂ is the principal biologically active derivative of PGD₂. The lower part of the figure schematizes the seven-spanning membrane receptors for each class of prostanoid, as well as their coupling to the intracellular effectors, adenylate cyclase (AC) and phospholipase C (PLC). The nomenclature for the prostanoid receptors is TP (TXA₂ receptor), EP (PGE₂ receptor), IP (PGI₂ receptor), FP (PGF₂ receptor) and DP (PGD₂ receptor). Although only plasma membrane receptors are indicated, PG receptors have also been described at the nuclear membrane. In addition to binding to DP receptors, PGD₂, as well as 15-d-PGJ₂, also bind to nuclear receptors, identified as PPARs.

designed to fit preferentially the larger COX-2 channel, resulting in a remarkably effective discrimination between the two COX isozymes (reviewed in [1, 2]).

Homeostatic and disease-related functions of COX-1 and COX-2

Notwithstanding their similar activities, COXs appear to play distinct roles in cellular physiology. COX-1 is constitutively expressed in a wide variety of cell types, while COX-2 is mostly inducibly expressed in a restricted number of cell types. Specifically, with the exception of the central nervous system, the renal cortex and the mature ovum, where it is expressed constitutively, COX-2 is inducibly expressed in monocytes, macrophages and polymorphonuclear cells in response to proinflammatory stimuli. Furthermore, COX-2 is ectopically expressed at high levels in some forms of neoplasia, including colon, breast and prostate cancer (reviewed in [3]). Prolonged usage of nonselective NSAIDs results in gastric ulceration and bleeding, supporting a key role for COX-1 in the maintenance of gastric integrity and homeostasis. On the other hand, selective inhibition of COX-2 effectively dampens inflammation with significantly less gastric damage (reviewed in [4]). Furthermore, there is good evidence for beneficial effects of COX-2 inhibitors both in chemoprevention and in treatment of some forms of colorectal cancer (reviewed in [5]).

The homeostatic functions of COX-1, as opposed to the disease-related functions of COX-2, have led to the concept of 'good' and 'bad' COXs; however, more recent data describing the effects of NSAIDs on specific cellular functions, as well as the analysis of the phenotypes of mice lacking either COX isoform, have provided significant insight into the roles of each isoform. Unique functions selectively implicating individual COX isozymes include platelet aggregation and parturition for COX-1, and ovulation and implantation, as well as some aspects of neonatal development, for COX-2 (reviewed in [6]). Unexpected synergies between COX-1 and COX-2 have, however, emerged in the control of a variety of physiological and physiopathological functions, as best exemplified by inflammation and colon cancer. Although according to the current dogma COX-2 is principally responsible for inflammation, COX-1 also appears to participate in this process. The antiinflammatory effects of COX-2-selective inhibitors in carrageenin-induced paw inflammation in the rat can indeed be achieved only at doses of the drugs that inhibit COX-1 [7]. Furthermore, a decreased inflammatory response to AA was observed in COX-1-deficient mice [8]. A cooperation of COX-1 or COX-2 in promoting carcinogenesis, rather than a unique role for COX-2, has also been established. Deficiency of either COX-1 and COX-2 results in a similar reduction in polyp formation in the *Min^{+/−}* mouse

model of adenomatous polyposis coli [9], in agreement with the proposed sequential function of COX-1 in the early stages of tumorigenesis and of COX-2 in tumor promotion after loss of heterozygosity of the *APC* gene has occurred [10].

More recently, an unanticipated role for COX-2 in the resolution of inflammation was established, based on identification of the antiinflammatory properties of cyclooctenone PGs, of which the most potent is 15-d-PGJ₂, which are produced by COX-2 late in the inflammatory response (reviewed in [11, 12]). In support of a role of COX-2 in the resolution of inflammation, selective inhibition of COX-2 results in exacerbation of inflammation in carrageenin-induced pleurisy in rats [13]. Furthermore, inflammatory responses fail to resolve in COX-2-deficient mice [7]. Of note, an antiinflammatory role has been suggested also for COX-1, as both COX-1 and COX-2 deficiencies in mice result in enhanced inflammatory responses in models of allergic asthma and inflammatory bowel disease [14, 15]. However, the mechanism underlying this activity of COX-1 remains to be elucidated.

COX-1 and COX-2: Why different outcomes from similar activities?

Differential control of enzymatic activity

The initial production of prostanoids in response to extracellular stimuli is accounted for primarily by COX-1 as the only preexisting COX isozyme, while COX-2 becomes dominant when COX-1 and COX-2 are coexpressed. During inflammation this dominance is largely related to the massive amounts of COX-2 expressed as compared with COX-1. Furthermore, the activity of COX isozymes is differentially controlled by endogenous peroxide concentrations and availability of AA. Specifically, COX-1, but not COX-2, is activated by reactive oxygen species, which are rapidly but transiently produced in response to proinflammatory stimuli or growth factors. Furthermore, COX-1 requires higher concentrations of AA than COX-2, a condition also achieved early following receptor engagement. Hence, the temporally controlled changes of endogenous peroxide and AA concentrations result in differential and sequential activation of COX-1 and COX-2 [11]. These quite subtle differences in the regulation of activity are, however, not sufficient to explain why, notwithstanding their largely overlapping features in substrate usage and catalytic properties, COX enzymes harbor dramatic differences in the panel of cellular responses evoked.

Differential coupling to PLA₂ and PG synthases

With the exception of platelets and endothelial cells, where the predominant prostanoid synthases are TXA₂ and PGI₂ synthase, respectively, much remains to be

learned about the specific cellular pattern of expression of the different PG synthases, as well as about the quantitative and qualitative changes in the balance of prostanoids when COX-2 is coexpressed with COX-1. It has been proposed that COX isozymes might be differentially coupled to specific PG synthases [16–18]. For example, as opposed to the constitutively expressed cytosolic PGE₂ synthase, a membrane-bound PGE₂ synthase is inducibly expressed concomitantly with the expression of COX-2 [18], suggesting coupling of COX-2 to the production of PGE₂ by the latter synthase. A similar functional coupling has been proposed for COX-2 and the secretory form of PLA₂. While the initial production of AA by COX-1 relies on the constitutively expressed, cytosolic form of PLA₂, in the presence of sustained extracellular stimulation a second, secreted PLA₂ isozyme is expressed, which, through coupling to COX-2 and the inducible PGE synthase, would be implicated in the delayed and prolonged synthesis of PGE₂ [11].

Differential coupling to PG receptors

The pleiotropic cellular responses to prostanoids are elicited as the result of their interaction with G-protein-coupled rhodopsin-type seven-spanning membrane receptors, encoded each by a distinct transcript which, as in the case of the PGE₂ receptor, can give rise to splice variants. Coupling of these receptors to adenylate cyclase or phospholipase C results in the production of two key second messengers, cyclic AMP (cAMP) and Ca²⁺ (fig. 1). Analysis of the phenotypes of mice deficient for each of the eight types and subtypes of prostanoid receptors has underscored not only the unique roles of the different prostanoids in various physiological and pathophysiological processes but also the variety of effects that the same prostanoid can elicit within the same cell depending on the type of receptor expressed (reviewed in [19]). It is therefore not surprising that as the result of coupling to different PG synthases, COX-1 and COX-2 can induce different biological responses in target cells. Furthermore, the existence of nuclear PG receptors preferentially coupled to COX-2 has been postulated. Functional PGE₂ receptors have indeed been described on nuclear membranes [20, 21]. These receptors appear to specifically participate in a signalling pathway implicated in the regulation of cell growth. The presence of PLA₂, as well as COX-2 at the nuclear envelope [22, 23], suggests that COX-2 might be coupled both to nuclear PLA₂ and to nuclear PGE₂ receptors as the result of physical segregation to the same subcellular localization.

Differences in substrates?

Although in vitro both COX isozymes can effectively use AA and other 20-carbon polyunsaturated fatty acids as substrates, recent data showing that COX-2, but not COX-1, can use as substrates esterified fatty acids such as 2-arachidonyl

glycerol suggests the provocative possibility of different physiological substrates for the two isozymes [24].

COX-independent targets of NSAIDs

PPARs

In addition to their ability to interact with COX, NSAIDs have been recently identified as ligands of the peroxisome proliferator-activated receptor (PPAR) family of ligand-activated transcription factors [25–27]. Initially implicated in the differentiation of adipocytes, PPARs have more recently been shown to play a key role in the modulation of immune responses through suppression of proinflammatory gene expression in macrophages [tumor necrosis factor α (TNF- α), interleukin (IL)-1, inducible nitric oxide synthase (iNOS)]. Upon binding of agonist, PPARs heterodimerize with the retinoic X receptors, and as such become competent to bind to PPAR-responsive elements on the promoters of target genes. In addition to their activity as transcriptional activators, agonist-bound PPARs can also function as transcriptional repressors by interacting with other transcription factors, such as nuclear factor kappa B (NF- κ B), resulting in their inactivation or sequestration (reviewed in [28, 29]). In agreement with the the immunosuppressive activities of PPARs in vitro, PPAR agonists attenuate inflammation in animal models of inflammatory diseases, while deletion of the PPAR α or PPAR γ gene results in exacerbation of the disease [30–33]. Although the identity of the physiological PPAR ligands has as yet not been clearly established, several metabolites of polyunsaturated fatty acids have been shown to bind and activate PPARs. The most potent of these are 12-hydroxy-octadecadienoic acid and 15-d-PGJ₂; however, other cyclopentenone PGs, such as PGJ₂, Δ^{12-14} -PGJ₂, PGA₂ and PGD₂, function as PPAR ligands. PPARs therefore represent a novel class of nuclear PG receptors specifically regulated by COX-2. Interestingly, COX-2-dependent 15-d-PGJ₂ production contributes to inactivation of NF- κ B not only as the result of its agonistic activity on PPAR but also by direct and selective targeting of the enzymatic machinery responsible for NF- κ B activation. 15-d-PGJ₂ has indeed been shown to form a covalent bond with IKK β , one of the subunits of inhibitor of NF- κ B (I κ B) kinase, resulting in irreversible inactivation of the kinase and of its final target, NF- κ B [34]. Participation of COX-2 in the resolution of inflammation can be accounted for primarily by these two mechanisms of inhibition of NF- κ B activation by cyclopentenone PG (reviewed in [35]).

A number of nonselective and COX-selective NSAIDs function as PPAR ligands, and in fact their wide spectrum of activities, from adipocyte differentiation to immunosuppression, fully overlap the responses evoked by physiological PPAR ligands [25–27]. Most immunosuppressive activities of NSAIDs unrelated to their ability to in-

hibit the synthesis of PGs are likely to be accounted for by their capacity to act as PPAR ligands and as such inhibit the transcription of proinflammatory genes. It must be underscored that activation of PPARs by NSAIDs and the resulting activities, including suppression of proinflammatory gene transcription, adipocyte differentiation and growth of cancer cells, are achieved at doses significantly higher than those required for inhibition of COXs [25, 27, 28, 36]. In this context, the requirement for higher doses of NSAIDs in the treatment of inflammation as compared with analgesia supports the notion that the antiinflammatory properties of NSAIDs involve additional targets distinct from COXs.

It is actually quite striking that the principal targets of NSAIDs, COXs and PPARs, are also two key modulators of inflammation. Therefore, on the one hand NSAIDs block the production of PGs, including cyclopentenone PG, through their activity on COXs, and would thereby be expected to antagonize not only inflammation but also the resolution of inflammation. On the other hand, NSAIDs bind PPARs and mimic the activity of cyclopentenone PG. This behavior implies that NSAIDs might only affect the early phase of inflammation, dominated by PGE₂ production, but not the late resolution phase marked by the production of cyclopentenone PG. While this notion is not supported by the finding that inhibition or deficiency of COXs results in exacerbation of inflammation in the carrageenin-induced pleurisy model [13] and in an allergic airway disease model [37], more work in other experimental models of inflammation is required to fully elucidate this issue.

Other targets

Additional COX-independent effects of NSAIDs have been identified; however, the mechanisms underlying these effects are as yet poorly understood. Indomethacin, but not other NSAIDs, promotes chemotaxis of Th2 cells, eosinophils and basophils by acting as an agonist of CRTH2 (chemoattractant receptor expressed on Th2 cells) [38]. Furthermore, effects elicited by aspirin, but not other NSAIDs, include inhibition of IL-4 gene transcription in T cells [39], inhibition of dendritic cell maturation [40, 41], inhibition of T cell adhesion and transmigration through the endothelium [42], and VCAM-1 and E-selectin expression in monocytes [43]. The resulting defects in leukocyte adhesion are likely to contribute to the antiinflammatory activities of NSAIDs.

NSAIDs and lymphocyte physiology

Although the immunomodulatory properties of NSAIDs have been studied primarily on the cells directly implicated in inflammation, including macrophages, neutrophils,

eosinophils and mast cells (reviewed in [44]), the effects of NSAIDs on lymphocytes have until recently been much less thoroughly characterized. NSAIDs are known to function as immunosuppressants on both T cells and B cells in vitro. While studies on the impact of NSAIDs on B cells are to date rather limited, significant progress has been achieved on T cells, where a highly synergistic combination of pharmacological inhibition and gene disruption has revealed fundamental and isoform-specific roles for COX isozymes in a panel of T cell functions.

NSAIDs and lymphocyte development

Thymic development is a multistep process where achievement of each principal maturation stage can be tracked by surface expression of the antigen coreceptors CD4 and CD8. Bone-marrow-derived progenitors colonize the thymic cortex, where they can be identified as CD4-CD8- (double negative) thymocytes. Following rearrangement of first the β and then the α chain of the T cell receptor (TCR) and expression of both CD4 and CD8, double-positive thymocytes interact with thymic stromal cells to undergo the most complex maturation phase where thymocytes expressing either self-specific or incorrectly rearranged TCRs are deleted (negative selection), while thymocytes expressing TCRs which can weakly bind self-peptides survive (positive selection). The latter further switch off either CD4 or CD8 expression, becoming single positive thymocytes. As maturation proceeds, thymocytes move to the medulla, from where single positive thymocytes eventually exit to reach the periphery as mature naive T cells (reviewed in [45]).

Both COX isoforms are expressed in the thymus, with a distinctive distribution for each isozyme. Specifically, COX-1 is expressed in developing thymocytes (CD4-CD8- and CD4⁺CD8⁺), while COX-2 expression is limited to a subset of medullary stromal cells [46]. Pharmacological inhibition of COX-1 in fetal thymus revealed a decrease in double positive thymocytes, supporting a role for COX-1 in the CD4-CD8- to CD4⁺CD8⁺ transition. A similar analysis of thymic organ cultures treated with COX-2-selective inhibitors showed a reduction both in CD4-CD8- thymocytes and in CD4⁺ single positive cells [46]. Hence, COX-2 expressed by thymic stromal cells participates at two key stages of thymopoiesis, first by favoring survival and differentiation of double negative thymocytes, and subsequently by promoting maturation of the CD4 helper T cell lineage. The role of COX isozymes in thymic development has been also addressed using fetal organ cultures from mice deficient for either COX-1 or COX-2 [46]. In full agreement with the results obtained using COX-1 and COX-2 selective NSAIDs, analysis of thymocyte populations in COX-1-deficient mice showed a reduction in CD4⁺CD8⁺ cells, while COX-2-deficient mice harbored a decrease in double negative

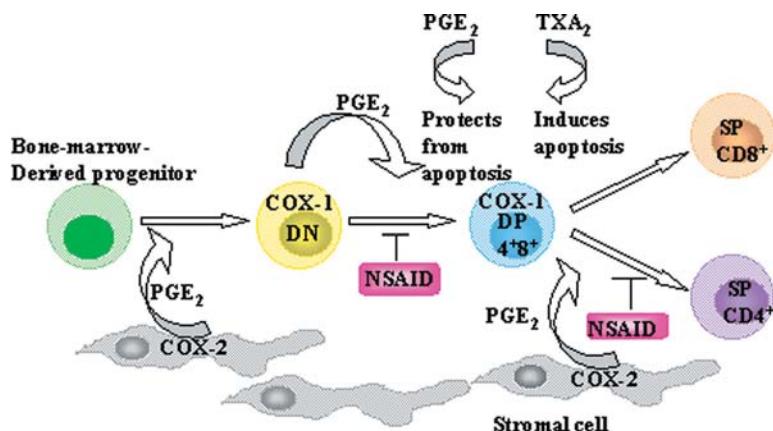


Figure 2. Targets of NSAIDs in thymic development. The developmental sequence of thymocytes from bone marrow progenitors is schematized from left to right. DN, double negative thymocytes ($CD4^-CD8^-$), DP $CD4^+CD8^+$, double positive thymocytes, SP $CD4^+$ and SP $CD8^+$, single positive thymocytes. The scheme shows that stromal cell-derived PGE₂, produced by constitutively expressed COX-2, affects two stages of thymic development, i.e. the maturation of DN and of SP $CD4^+$ thymocytes. DN and DP thymocytes constitutively express COX-1, which through the production of PGE₂ promotes the transition from the DN to the DP stage. COX-1-selective NSAIDs added to fetal thymic organ cultures block the DN-to-DP transition, while COX-2-selective NSAIDs block the maturation of SP $CD4^+$ thymocytes. PGE₂ and TXA₂ exogenously added to purified thymocytes protect from or promote apoptosis, respectively.

and in single positive $CD4^+$ cells [46]. Hence, both COX isozymes are implicated in thymic development (fig. 2). A number of prostanoid receptors are expressed in the thymus; however, the specific role of each class of receptor on thymocyte development and selection still awaits full elucidation. TXA₂ receptors are widely expressed in the thymus, with the highest expression in double negative thymocytes followed by single positive thymocytes. Pharmacological modulation of thromboxane receptor activity in thymocytes induces apoptosis of $CD4^+CD8^+$ thymocytes, suggesting a potential role for these receptors in negative selection [47]. An opposite effect on the same thymocyte subpopulation is elicited by PGE₂ receptors. In fact, PGE₂ protects immature $CD4^+CD8^+$ thymocytes from apoptosis, an activity which appears mediated by cAMP, suggesting a role for PGE₂ receptors in positive selection [48]. Of note, notwithstanding the different pattern of PG receptor expression in thymocyte subpopulations, PGE₂, but not other PGs, could rescue the defects in thymocyte development elicited by both COX-1 and COX-2 selective NSAIDs. Furthermore, neutralization of PGE₂ by specific antibodies mimicked the effects of NSAIDs on thymocyte maturation, supporting a selective role of PGE₂ receptors [46]. While pharmacological evidence suggests a distinct role for specific PGE₂ receptor subtypes at the different stages of thymocyte development [46], it will be interesting to address the impact of ablation of individual PG receptors on this process.

NSAIDs and lymphocyte activation

The inhibitory activity of NSAIDs on lymphocyte activation in vitro is well documented; however, a better insight

into the mechanisms underlying NSAID-dependent immunosuppression has been achieved only recently with a more exhaustive characterization of the molecular targets of NSAIDs. Although the role of COXs in T and B lymphocyte activation and differentiation has as yet not been addressed in vivo in COX-deficient mice, their implication in these processes is supported by the profound effects of prostanoids on these cells in vitro. Both classes of prostanoids, thromboxanes and PGs, affect lymphocyte activation; however, they harbor opposite activities, at least in vitro. TXA₂ promotes T cell activation and proliferation, as well as differentiation of effector cytolytic T cells [49]. Conversely, PGE₂ suppresses T cell activation and proliferation through a cAMP-dependent mechanism, in agreement with the agonistic activity of PGE₂ receptors on adenylate cyclase [50, 51]. PGE₂, as well as cAMP agonists, inhibit not only IL-2 and IL-2R gene expression [50–55] but also expression of JAK3, thereby contributing to defective IL-2R signalling [56]. Analysis of PGE₂ receptor-deficient mice has revealed a major role for the EP2 receptor in the immunosuppressive activity of PGE₂ [57].

PGE₂ also inhibits B cell activation, proliferation and differentiation to immunoglobulin (Ig)G-secreting cells [58–60]. Similarly, production of IgM by peritoneal B-1 cells is inhibited by PGE₂ [61]. Interestingly, the defect in B cell activation is paralleled by IgE class switching and increased production of IgE [59, 62]. As in T cells, these biological activities of PGE₂ are dependent on cAMP, in agreement with the proposed role of the EP2 and EP4 receptors in the activation and differentiation of B cells [55, 63]. Of note, opposite effects are elicited by PGE₂ when B cells are stimulated not through membrane Ig, but

through CD40. In this system PGE₂ enhances IL-4-dependent B cell proliferation and antagonizes IL-4-dependent IgE class switching [64], suggesting that different responses might be elicited by PGE₂ in different cellular microenvironments. In support of this possibility, PGB₂, a catabolite of PGE₂, has recently been shown to act as costimulator in T cell activation [65].

The issue is further complicated by the finding that cyclopentenone PGs, which appear to play opposite roles to PGE₂ in inflammation, harbor in lymphocytes immunosuppressive activities overlappable with those elicited by PGE₂, including suppression of T cell activation and proliferation, and inhibition of IL-4-dependent IgE class switching [66, 67]. This apparent discrepancy is likely to be accounted for by the PG receptor-independent activity of cyclopentenone PGs both as inhibitors of I κ B kinase [34] and as coactivators of PPAR family transcription factors [26, 68, 69]. PPAR α and PPAR γ are expressed both in T and in B cells [70–73], where they function as negative regulators of transcription factors crucial for T cell activation, including NF- κ B, AP-1 and STAT [68, 71, 74–77]. Furthermore, agonist-bound PPAR γ interacts with nuclear factor of activated T cells (NF-AT), resulting in defective binding of this transcription factor to target promoter sequences [78]. Of note, although present in resting cells, PPAR γ is transcriptionally upregulated in response to mitogenic stimuli [70], suggesting that PPAR γ might function at a late stage of T cell activation as part of a regulatory feedback loop. This possibility is supported by the finding that PPAR α target genes can be activated by PPAR agonists only in the presence of histone deacetylase inhibitors [71], suggesting gene reactivation by chromatin remodelling. Furthermore, PGE₂ production by COX appears to precede the production of cyclopentenone PGs, implicating PGE₂ receptors and PPARs in temporally distinct phases of T cell activation. The profound impact of PPARs on lymphocyte activation explains at least in part the immunosuppressive activities of NSAIDs. In fact, notwithstanding their capacity to block PG production, and thereby potentially relieve the block in lymphocyte activation by PGE₂, NSAIDs strongly suppress lymphocyte activation in vitro. Recent data show that both nonselective and isoform-selective NSAIDs bind PPARs and as such modulate their transcriptional activity. Specifically, NSAIDs function as coactivators of both PPAR α and PPAR γ [25–27], thereby mimicking the activity of cyclopentenone PGs. Hence, NSAID-mediated immunosuppression is likely to be partly accounted for by their activity on PPARs. Nevertheless, data suggest that inhibition of COXs by NSAIDs might also be implicated. PLA₂ has been shown to function as a key regulator of lymphocyte proliferation [79], suggesting a role for AA and its metabolites in this process. COX-1 is constitutively expressed in lymphocytes, and the gene encoding COX-2 is inducibly ex-

pressed following TCR engagement, identifying it as an early response gene potentially implicated in the program of T cell activation [80]. In support of this possibility, NSAID-dependent inhibition of NF-AT can be partly recovered by PGE₂ [81]. COX-2 gene expression is strictly dependent on p38 MAP kinase, which participates both in transcriptional regulation of COX-2 gene expression and in posttranscriptional stabilization of COX-2 messenger RNA (mRNA) [82, 83]. p38 MAP kinase is also implicated in a complex serine-threonine kinase network triggered through a tyrosine kinase-dependent pathway by antigen receptor engagement and resulting in activation of gene expression, as well as rearrangement of cortical actin [84, 85] (fig. 3). COX-1 inhibitors completely and selectively block the activation of p38 MAP kinase induced both by T cell and B cell antigen receptor engagement [81]. This effect appears to be COX dependent, as activation of p38 MAP kinase can be elicited by PGE₂. Furthermore, a selective COX-1 inhibitor blocks COX-2 expression, an effect which can be reversed by exogenous PGE₂ [81]. These data suggest that COX-1 participates in the T cell and B cell antigen receptor signalling cascades leading to p38 MAP kinase activation, a process which will eventually promote activation of COX-2 gene expression (fig. 3). Further work is needed to specifically track the contributions of COXs and PPARs in the physiological process of lymphocyte activation. In this respect, the existence of mice deficient in either COX isoform, as well as of PPAR α and PPAR γ , will provide a powerful tool to understand to what extent COXs and PPARs contribute to the immunosuppressive activities of NSAIDs.

NSAIDs and T cell polarization

In addition to their role in lymphocyte activation, COX enzymes have been implicated in the shaping of immune responses by affecting T cell polarization. The distinction of helper T cells as Th1 or Th2 is based on the specific pattern of cytokines produced by these cells, and the polarization of T helper cells towards either phenotype is dictated by the cytokines present in the microenvironment (reviewed in [86]). PGs have been found to profoundly affect T helper cell polarization. PGE₂ specifically suppresses the expression of Th1-related cytokines (IL-12, IFN γ) while not affecting the expression of Th2-related cytokines (IL-4, IL-10) [87, 88], an activity which has been proposed to result from inhibition of IL-2 gene expression by PGE₂ since exogenous IL-2 can overcome the effects of PGE₂ [89]. In addition to its direct effect on T cells, PGE₂ also antagonizes the expression of cytokines controlling Th1 polarization in B cells, macrophages and dendritic cells, while promoting expression of cytokines controlling Th2 polarization [90–92], thereby also contributing indirectly to development of Th2 cells. More recently, PGD₂ has been suggested as primarily re-

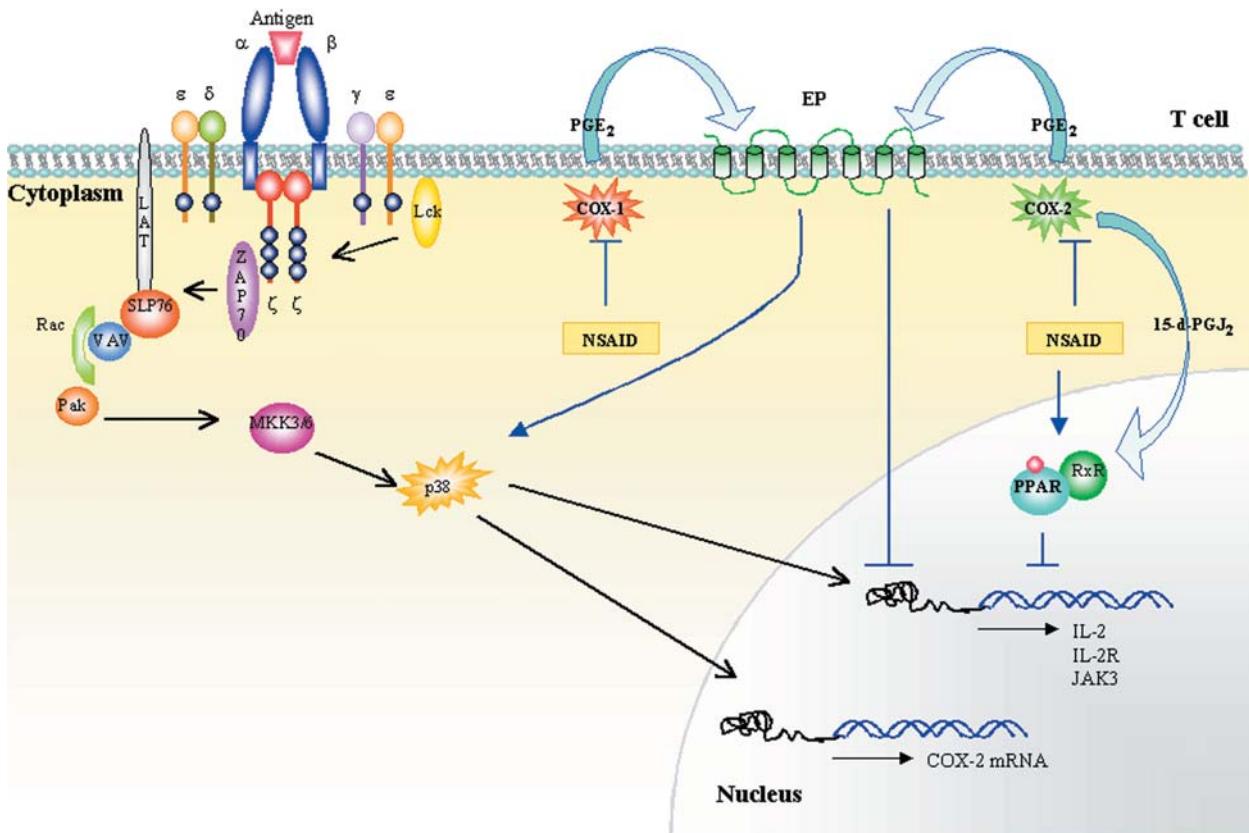


Figure 3. Targets of NSAIDs in T-cell activation. The T-cell antigen receptor and the EP (PGE₂) receptor at the T cell surface are schematized. The TCR is shown as an $\alpha\beta$ dimer, associated with the $\gamma\epsilon$, $\delta\epsilon$ and $\zeta\zeta$ dimers of the CD3 complex. The phosphorylated tyrosine-based activation motifs (ITAM) of the CD3 complex subunits are shown as grey circles. The Src kinase Lck is believed to be principally responsible for their phosphorylation. Bound to the ζ chain ITAMs is the tyrosine kinase ZAP-70, which in turn forms a complex with a number of proteins (LAT, SLP-76, Vav, Rac, Pak) implicated in the activation of the MKK3/6-p38 stress kinase pathway. Activated (phosphorylated) p38 translocates to the nucleus, where it participates in the transcriptional activation of genes crucially required for T cell activation (such as IL-2), as well as of the gene encoding COX-2. NSAIDs block TCR-dependent p38 activation and thereby contribute to immunosuppression. This activity of NSAIDs depends on their inhibitory activity on COX, as p38 can be activated by exogenous PGE₂. In addition, NSAIDs bind and activate PPARs, which antagonize the activity of key transcription factors responsible for T cell activation (IL-2, IL-2R, JAK3).

sponsible for Th2 polarization. PGD synthase is preferentially expressed in Th2 cells, and PGD synthase-producing CD4⁺ T cells harbor a Th2 profile of cytokine expression [93]. Furthermore, overexpression of a PGD synthase transgene in mouse results in the selective development of Th2 cells [94].

Surprisingly, as with lymphocyte activation, also in this case the effects of NSAIDs overlap rather than antagonize the activities of PGE₂, as would be expected from their activity as COX inhibitors, suggesting an alternative mechanism of inhibition potentially involving PPARs. Indeed, NSAIDs antagonize Th1 cell development by blocking IL-12 expression both by T cells and by antigen-presenting cells [41, 95]. Expression of IL-4, which promotes Th2 cell development, was enhanced by indomethacin in concanavalin A-stimulated murine splenocytes [96]. Moreover, increased levels of the Th2-related cytokines IL-5 and IL-13 were increased in vivo in indomethacin-treated mice [37]. On the other hand, in a

mouse model of *Leishmania* infection, characterized by the selective development of Th2 cells, in vivo administration of indomethacin results in upregulation of IL-12 expression and Th1 cell development, as well as increased resistance to infection [97, 98]. Furthermore, aspirin, as well as the related weak COX inhibitor salicylic acid, have been reported to inhibit IL-4 gene expression [39]. Although further studies are required to clarify this issue, the data suggest the challenging possibility that NSAIDs might be used as therapeutics in diseases characterized by an altered Th1/Th2 balance.

PGs are also likely to be implicated in Th2 cell chemotaxis, thereby contributing in the recruitment of these cells to the sites of inflammation. Th2 cells preferentially express the PGD₂ receptor CRTH2, which is also found in basophils and eosinophils, and PGD₂ induces chemotaxis of these cells through this receptor [99]. CRTH2-mediated chemotaxis is also induced by indomethacin; however, other NSAIDs do not elicit the same effect, sug-

gesting that COX-dependent production of PGD₂ is not responsible for this activity of indomethacin [38].

NSAIDs and lymphocyte apoptosis

The role of COX enzymes, and particularly of COX-2, in cell apoptosis, and the effects of NSAIDs on this process, have been principally established in colon carcinoma cells. As opposed to their normal counterparts, these cells constitutively express high levels of COX-2. A causal relationship between COX-2 expression and failure of cancer cells to undergo apoptosis has been established. Remarkably, NSAIDs not only induce apoptosis of colon carcinoma cells *in vitro*, but also reduce colonic adenomas *in vivo*. The apoptogenic activity of NSAIDs, which has been found to extend to other cancers, has been correlated to their capacity to stimulate the expression of proapoptotic genes while blocking the pathways controlling proliferation and survival (reviewed in [5]).

PGE₂ has been reported both to promote and suppress apoptosis of lymphoid cells *in vitro* [100–103]. Differences in the specific stage of maturation, in the state of activation or in neoplastic vs. normal phenotype of T and B cells have been suggested to underlie this dual activity of PGE₂. For example, PGE₂ suppresses apoptosis in CD4⁺CD8⁺ thymocytes, while promoting apoptosis of isolated CD4⁻CD8⁻ thymocytes *in vitro* [48, 104]. Both the proapoptotic and antiapoptotic activities of PGE₂ have been correlated with a modulation of cAMP levels and the expression of antiapoptotic or proapoptotic genes, such as Bcl-2 family proteins and Fas ligand [56,

103, 105, 106], thereby implicating adenyl cyclase-coupled PGE₂ receptors in lymphocyte apoptosis.

As opposed to the opposite effects of PGE₂ on apoptosis, cyclopentenone PGs have been consistently shown to promote apoptosis of both T and B cells through their interaction with PPARs, although there is as yet no consensus whether the cellular targets of the apoptogenic activity of PPAR agonists are only neoplastic or also normal lymphocytes [73, 107–109]. As with PGE₂, the apoptogenic activity of PPAR agonists can be correlated to a change in the balance of apoptotic and antiapoptotic proteins or in downregulation of proteins implicated in cell survival, such as c-myc [110].

In agreement with their capacity to both inhibit COX activity and function as PPAR coactivators, NSAIDs promote apoptotic death both of normal and leukemic cells *in vitro*; however, transformed cells appear more sensitive to the apoptogenic activity of NSAIDs. For example, the COX-2 inhibitor NS-398 promotes apoptotic death of human T lymphotropic virus (HTLV-1) transformed cells, which are characterized by constitutive COX-2 expression, by downregulating the expression of Bcl-2 and Bcl-xL [111]. Sodium salicylate blocks spontaneous proliferation of splenocytes of HTLV-1 Tax transgenic mice [112]. Furthermore, aspirin has been reported to induce apoptosis of chronic lymphocytic leukemia B cells, albeit in a COX-independent fashion [113]. Of note, inhibition of NF-κB, a target both of COX and of PPAR, has been shown to promote apoptosis of B cells [114, 115], suggesting that the apoptogenic activity of NSAIDs might be largely dependent on their capacity to inhibit NF-κB. Whichever the mechanism, the data suggest that NSAIDs

Table 1. Summary of the activities of NSAIDs and prostanoids on lymphocytes.

	Thymocyte development	T/B cell activation	T cell polarization	T/B cell apoptosis
NSAIDs ^a				
nonselective ^a	↓ DN to DP [46]	↓ [80, 81, 116, 117]	↓ Th1/↑ Th2 [37, 41, 95, 96] ↑ Th1/↓ Th2 [39, 97, 98]	↑ [112, 113]
COX-1 ^b	↓ DN to DP [46]	↓ [81]		
COX-2 ^c	↓ SP CD4 [46]	↓ [80, 81]		↑ [111]
Prostanoids				
TXA ₂	↑ neg. selection [47]	↑ [49]	nd	↑ [47]
PGE ₂	↑ survival DP [48]	↑ [50–63]	↓ Th1/↑ Th2 [87–92]	↑ [100–102, 104] ↓ [48, 103, 106]
PGD ₂	nd	nd	↑ Th2 [93, 94]	nd
PDB ₂	nd	↑ [65]	nd	nd
15-d-PGJ ₂				
PPAR ligands ^{d,e}	nd	↓ [66, 67, 70, 72, 76, 78]	nd	↑ [73, 107–110]

^a NSAIDs used in the work cited in the references (in brackets).

^b Aspirin, indomethacin, sulindac, piroxicam and the propionic acid derivatives ibuprofen, naxoprofen, ketoprofen.

^c Resveratrol, L-759,700.

^d NS-398, celecoxib, L-745,337.

^e PPAR ligands: -thiazolidinediones (PPAR γ agonists: ciglitazone, troglitazone), -fibrates (PPAR γ agonist: WY14,643; PPAR α agonist GW7,647).

^e The following nonselective NSAIDs have also been shown to be PPAR ligands: indomethacin, sulindac, ibuprofen, naxoprofen, fenoprofen, ibuprofen, flufenamic acid.

might be included in the design of novel strategies in the pharmacological treatment of lymphoproliferative disorders. The effects of NSAIDs and prostanoids on lymphocyte development, differentiation and death are summarized in table 1.

Conclusions

The successful combination of pharmacological and genetic approaches has answered a number of questions regarding the physiological and physiopathological functions of COXs and their products in lymphocyte biology, and has clarified to a large extent the mechanisms underlying the activities of NSAIDs in these cells; however, the picture is far from complete. Significant insight into the role of each COX isoform, as well as of the individual membrane PG receptors, is expected to be gained from the analysis of lymphocyte maturation, differentiation and death in the existing knockout mice. Furthermore, significant progress in the functional characterization of the different PGs, and particularly the identification of PPARs as nuclear receptors of cyclopentenone PGs and NSAIDs, has set the priority goal of understanding the specific contribution of membrane PG receptors and PPARs to the biological effects of NSAIDs. Clarifying these crucial issues is likely to result in the design of NSAID-based therapeutic strategies based on the immunosuppressive or apoptogenic activities of these drugs for the treatment of inflammatory pathologies initiated or sustained by T lymphocytes, such as rheumatoid arthritis, inflammatory demyelinating diseases and asthma, as well as lymphoproliferative diseases.

Acknowledgements. The authors wish to thank John L. Telford for critical reading of the manuscript. Part of the work described in this review was supported by the Italian Association for Cancer Research and Telethon (grant E.1161).

- 1 Vane J. R., Bakhle Y. S. and Botting R. M. (1998) Cyclooxygenases 1 and 2. *Annu. Rev. Pharmacol. Toxicol.* **38**: 97–120
- 2 Smith W. L., DeWitt D. L. and Garavito R. M. (2000) Cyclooxygenases: structural, cellular and molecular biology. *Annu. Rev. Biochem.* **69**: 145–182
- 3 Wallace J. L. (1999) Distribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles and the categorization of nonsteroidal anti-inflammatory drugs (NSAIDs). *Am. J. Med.* **107**: 11S–16S
- 4 Vane J. R. and Botting R. M. (1998) Mechanism of action of nonsteroidal anti-inflammatory drugs. *Am. J. Med.* **104**: 2S–8S
- 5 Cao Y. and Prescott S. M. (2002) Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. *J. Cell. Physiol.* **190**: 279–286
- 6 Smith W. L. and Langenbach R. (2001) Why there are two cyclooxygenase isozymes. *J. Clin. Invest.* **107**: 1491–1495
- 7 Wallace J. L., Bak A., McKnight W., Asfaha S., Sharkey K. A. and MacNaughton W. K. (1998). Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity. *Gastroenterology* **115**: 101–109
- 8 Langenbach R., Morham S. G., Tiano H. F., Loftin C. D., Ghanayem B. I., Chulada P. C. et al. (1995). Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. *Cell* **83**: 483–492
- 9 Chulada P. C., Thompson M. B., Mahler J. F., Doyle C. M., Gaul B. W., Lee C. et al. (2000) Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. *Cancer Res.* **60**: 4705–4708
- 10 Prescott S. M. and White R. L. (1996) Self-promotion? Intimate connections between APC and prostaglandin H synthase-2. *Cell* **87**: 783–786
- 11 Fitzpatrick F. A. and Soberman R. (2001) Regulated formation of eicosanoids. *J. Clin. Invest.* **107**: 1347–1351
- 12 Funk C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. *Science* **294**: 1871–1875
- 13 Gilroy D. W., Colville-Nash P. R., Willis D., Chivers J., Paul-Clark M. J. and Willoughby D. A. (1999) Inducible cyclooxygenase may have anti-inflammatory properties. *Nat. Med.* **5**: 698–701
- 14 Gavett S. H., Madison S. L., Chulada P. C., Scarborough P. E., Qu W., Boyle J. E., Tiano H. F. et al. (1999) Allergic lung responses are increased in prostaglandin H synthase-deficient mice. *J. Clin. Invest.* **104**: 721–732
- 15 Morteau O., Morham S. G., Sellon R., Dieleman L. A., Langenbach R., Smithies O. et al. (2000) Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. *J. Clin. Invest.* **105**: 469–478
- 16 Naraba H., Murakami M., Matsumoto H., Shimbara S., Ueno A., Kudo I. et al. (1998) Segregated coupling of phospholipases A2, cyclooxygenases, and terminal prostanoid synthases in different phases of prostanoid biosynthesis in rat peritoneal macrophages. *J. Immunol.* **160**: 2974–2982
- 17 Tanioka T., Nakatani Y., Semmyo N., Murakami M. and Kudo I. (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. *J. Biol. Chem.* **275**: 32775–32782
- 18 Murakami M., Naraba H., Tanioka T., Semmyo N., Nakatani Y., Kojima F. et al. (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. *J. Biol. Chem.* **275**: 32783–32792
- 19 Narumiya S. and FitzGerald G. A. (2001) Genetic and pharmacological analysis of prostanoid receptor function. *J. Clin. Invest.* **108**: 25–30
- 20 Bhattacharya M., Peri K. G., Almazan G., Ribeiro-da-Silva A., Shichi H., Durocher Y. et al. (1998) Nuclear localization of prostaglandin E2 receptors. *Proc. Natl. Acad. Sci. USA* **95**: 15792–15797
- 21 Bhattacharya M., Peri K., Ribeiro-da-Silva A., Almazan G., Shichi H., Hou X. et al. (1999) Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. *J. Biol. Chem.* **274**: 15719–15724
- 22 Schievella A. R., Regier M. K., Smith W. L. and Lin L. L. (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. *J. Biol. Chem.* **270**: 30749–30754
- 23 Spencer A. G., Woods J. W., Arakawa T., Singer I. I. and Smith W. L. (1998) Subcellular localization of prostaglandin endoperoxide H synthases-1 and -2 by immunoelectron microscopy. *J. Biol. Chem.* **273**: 9886–9893
- 24 Kozak K. R., Rowlinson S. W. and Marnett L. J. (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glycerol prostaglandins by cyclooxygenase-2. *J. Biol. Chem.* **275**: 33744–33749
- 25 Lehmann J. M., Lenhard J. M., Oliver B. B., Ringold G. M. and Kliewer S. A. (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and

other non-steroidal anti-inflammatory drugs. *J. Biol. Chem.* **272**: 3406–3410

26 Jiang C., Ting A. T. and Seed B. (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. *Nature* **391**: 82–86

27 Jaradat M. S., Wongsud B., Phornchirasilp S., Rangwala S. M., Shams G., Sutton M. et al. (2001) Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen and indomethacin. *Biochem. Pharmacol.* **62**: 1587–1595

28 Chinetti G., Fruchart J. C. and Staels B. (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. *Inflamm. Res.* **49**: 497–505

29 Harris S. G., Padilla J., Koumas L., Ray D. and Phipps R. P. (2002) Prostaglandins as modulators of immunity. *Trends Immunol.* **23**: 144–150

30 Su C. G., Wen X., Bailey S. T., Jiang W., Rangwala S. M., Keilbaugh S. A. et al. (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. *J. Clin. Invest.* **104**: 383–389

31 Pasceri V., Wu H. D., Willerson J. T. and Yeh E. T. (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. *Circulation* **101**: 235–238

32 Desreumaux P., Dubuquoy L., Nutten S., Peuchmaur M., Englano W., Schoonjans K. et al. (2001) Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPAR γ) heterodimer. A basis for new therapeutic strategies. *J. Exp. Med.* **193**: 827–838

33 Nakajima A., Wada K., Miki H., Kubota N., Nakajima N., Terauchi Y. et al. (2001) Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. *Gastroenterology* **120**: 460–469

34 Rossi A., Kapahi P., Natoli G., Takahashi T., Chen Y., Karin M. and Santoro MG. (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. *Nature* **403**: 103–108

35 Willoughby D. A., Moore A. R., Colville-Nash P. R. and Gilroy D. (2000) Resolution of inflammation. *Int. J. Immunopharmacol.* **22**: 1131–1135

36 Wick M., Hurette G., Dessev C., Chan D., Geraci M. W., Winn R. A. et al. (2002) Peroxisome proliferator-activated receptor-gamma is a target of nonsteroidal anti-inflammatory drugs mediating cyclooxygenase-independent inhibition of lung cancer cell growth. *Mol. Pharmacol.* **62**: 1207–1214

37 Peebles R. S. Jr., Dworski R., Collins R. D., Jarzecka K., Mitchell D. B., Graham B. S. et al. (2000) Cyclooxygenase inhibition increases interleukin 5 and interleukin 13 production and airway hyperresponsiveness in allergic mice. *Am. J. Respir. Crit. Care Med.* **162**: 676–681

38 Hirai H., Tanaka K., Takano S., Ichimasa M., Nakamura M. and Nagata K. (2002) Cutting edge: agonistic effect of indomethacin on a prostaglandin D2 receptor, CRTH2. *J. Immunol.* **168**: 981–985

39 Cianferoni A., Schroeder J. T., Kim J., Schmidt J. W., Lichtenstein L. M., Georas S. N. et al. (2001) Selective inhibition of interleukin-4 gene expression in human T cells by aspirin. *Blood* **97**: 1742–1749

40 Matasic R., Dietz A. B. and Vuk-Pavlovic S. (2000) Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin. *Immunology* **101**: 53–60

41 Hackstein H., Morelli A. E., Larregina A. T., Ganster R. W., Papworth G. D., Logar A. J. et al. (2001) Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. *J. Immunol.* **166**: 7053–7062

42 Gerli R., Paolucci C., Greselle P., Bistoni O., Fiorucci S., Muscat C. et al. (1998) Salicylates inhibit adhesion and transmigration of T lymphocytes by preventing integrin activation induced by contact with endothelial cells. *Blood* **92**: 2389–2398

43 Weber C., Erl W., Pietsch A. and Weber P. C. (1995) Aspirin inhibits nuclear factor-kappa B mobilization and monocyte adhesion in stimulated human endothelial cells. *Circulation* **91**: 1914–1917

44 Tilley S. L., Coffman T. M. and Koller B. H. (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. *J. Clin. Invest.* **108**: 15–23

45 Rodewald H. R. and Fehling H. J. (1998) Molecular and cellular events in early thymocyte development. *Adv. Immunol.* **69**: 1–112

46 Rocca B., Spain L. M., Pure E., Langenbach R., Patrono C. and Fitzgerald G. A. (1999) Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development. *J. Clin. Invest.* **103**: 1469–1477

47 Ushikubi F., Aiba Y., Nakamura K., Namba T., Hirata M., Mazda O. et al. (1993) Thromboxane A2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. *J. Exp. Med.* **178**: 1825–1830

48 Goetzel E. J., An S. and Zeng L. (1995) Specific suppression by prostaglandin E2 of activation-induced apoptosis of human CD4+CD8+ T lymphoblasts. *J. Immunol.* **154**: 1041–1047

49 Ruiz P., Rey L., Spurney R., Coffman T. and Viciana A. (1992) Thromboxane augmentation of alloreactive T cell function. *Transplantation* **54**: 498–505

50 Chouaib S., Welte K., Mertelsmann R. and Dupont B. (1985) Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferring receptor expression. *J. Immunol.* **135**: 1172–1179

51 Rincon M., Tugores A., Lopez-Rivas A., Silva A., Alonso M., De Landazuri M. O. et al. (1988) Prostaglandin E2 and the increase of intracellular cAMP inhibit the expression of interleukin 2 receptors in human T cells. *Eur. J. Immunol.* **18**: 1791–1796

52 Minakuchi R., Wacholtz M. C., Davis L. S. and Lipsky P. E. (1990) Delineation of the mechanism of inhibition of human T cell activation by PGE2. *J. Immunol.* **145**: 2616–2625

53 Santoli D., Phillips P. D., Colt T. L. and Zurier R. B. (1990) Suppression of interleukin 2-dependent human T cell growth in vitro by prostaglandin E (PGE) and their precursor fatty acids. Evidence for a PGE-independent mechanism of inhibition by the fatty acids. *J. Clin. Invest.* **85**: 424–432

54 Krause D. S. and Deutsch C. (1991) Cyclic AMP directly inhibits IL-2 receptor expression in human T cells: expression of both p55 and p75 subunits is affected. *J. Immunol.* **146**: 2285–2296

55 Roper R. L., Ludlow J. W. and Phipps R. P. (1994) Prostaglandin E2 inhibits B lymphocyte activation by a cAMP-dependent mechanism: PGE-inducible regulatory proteins. *Cell. Immunol.* **154**: 296–308

56 Kolenko V., Rayman P., Roy B., Cathcart M. K., O'Shea J., Tubbs R. et al. (1999) Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: impact on interleukin-2 receptor signaling pathway. *Blood* **93**: 2308–2318

57 Nataraj C., Thomas D. W., Tilley S. L., Nguyen M. T., Mannon R., Koller B. H. et al. (2001) Receptors for prostaglandin E(2) that regulate cellular immune responses in the mouse. *J. Clin. Invest.* **108**: 1229–1235

58 Patke C. L., Orson F. M. and Shearer W. T. (1991) Cyclic AMP-mediated modulation of immunoglobulin production in B cells by prostaglandin E1. *Cell. Immunol.* **137**: 36–45

59 Roper R. L. and Phipps R. P. (1992) Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. *J. Immunol.* **149**: 2984–2991

60 Muthusamy N. and Bondada S. (1993) Differential regulation of surface immunoglobulin and Lyb2 mediated B cell activation: II. cAMP dependent (prostaglandin E2) and independent(IFN-gamma) mechanisms of regulation of B lymphocyte activation. *Int. Immunol.* **5**: 949–956

61 Chace J. H., Fleming A. L., Gordon J. A., Perandones C. E. and Cowdery J. S. (1995) Regulation of differentiation of peritoneal B-1a (CD5+) B cells. Activated peritoneal macrophages release prostaglandin E2, which inhibits IgM secretion by peritoneal B-1a cells. *J. Immunol.* **154**: 5630–5636

62 Pene J., Rousset F., Briere F., Chretien I., Bonnefoy J. Y., Spits H. et al. (1988) IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. *Proc. Natl. Acad. Sci. USA* **85**: 6880–6884

63 Fedyk E. R. and Phipps R. P. (1996) Prostaglandin E2 receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. *Proc. Natl. Acad. Sci. USA* **93**: 10978–10983

64 Garrone P., Galibert L., Rousset F., Fu S. M. and Banchereau J. (1994) Regulatory effects of prostaglandin E2 on the growth and differentiation of human B lymphocytes activated through their CD40 antigen. *J. Immunol.* **152**: 4282–4290

65 Cattan N., Mary D., Peleraux A., Mari B., Aussel C. and Rossi B. (2000) Prostaglandin B(2) delivers a co-stimulatory signal leading to T cell activation. *Eur. Cytokine Netw.* **11**: 293–299

66 Clark R. B., Bishop-Bailey D., Estrada-Hernandez T., Hla T., Puddington L. and Padula S. J. (2000) The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. *J. Immunol.* **164**: 1364–1371

67 Miyazaki Y., Tachibana H. and Yamada K. (2002) Inhibitory effect of peroxisome proliferator-activated receptor-gamma ligands on the expression of IgE heavy chain germline transcripts in the human B cell line DND39. *Biochem. Biophys. Res. Commun.* **295**: 547–552

68 Ricote M., Li A. C., Willson T. M., Kelly C. J. and Glass C. K. (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. *Nature* **391**: 79–82

69 He T. C., Chan T. A., Vogelstein B. and Kinzler K. W. (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. *Cell* **99**: 335–345

70 Cunard R., Ricote M., DiCampli D., Archer D. C., Kahn D. A., Glass C. K. et al. (2002) Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. *J. Immunol.* **168**: 2795–2802

71 Jones D. C., Ding X. and Daynes R. A. (2002) Nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is expressed in resting murine lymphocytes. The PPAR-alpha in T and B lymphocytes is both transactivation and transrepression competent. *J. Biol. Chem.* **277**: 6838–6845

72 Marx N., Kehrl B., Kohlhammer K., Grub M., Koenig W., Hombach V. et al. (2002) PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. *Circ. Res.* **90**: 703–710

73 Padilla J., Leung E. and Phipps R. P. (2002) Human B lymphocytes and B lymphomas express PPAR-gamma and are killed by PPAR-gamma agonists. *Clin. Immunol.* **103**: 22–33

74 Delerive P., De Bosscher K., Besnard S., Vanden Berghe W., Peters J. M., Gonzalez F. J. et al. (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. *J. Biol. Chem.* **274**: 32048–32054

75 Straus D. S., Pascual G., Li M., Welch J. S., Ricote M., Hsiang C. H. et al. (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. *Proc. Natl. Acad. Sci. USA* **97**: 4844–4849

76 Wang P., Anderson P. O., Chen S., Paulsson K. M., Sjogren H. O. and Li S. (2001) Inhibition of the transcription factors AP-1 and NF-kappaB in CD4 T cells by peroxisome proliferator-activated receptor gamma ligands. *Int. Immunopharmacol.* **1**: 803–812

77 Boydault S., Simonin M. A., Bianchi A., Compe E., Liagre B., Mainard D. et al. (2001) 15-Deoxy-delta12,14-PGJ2, but not troglitazone, modulates IL-1beta effects in human chondrocytes by inhibiting NF-kappaB and AP-1 activation pathways. *FEBS* **501**: 24–30

78 Yang X. Y., Wang L. H., Chen T., Hodge D. R., Resau J. H., DaSilva L. et al. (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. *J. Biol. Chem.* **275**: 4541–4544

79 Roshak A. K., Capper E. A., Stevenson C., Eichman C. and Marshall L. A. (2000) Human calcium-independent phospholipase A2 mediates lymphocyte proliferation. *J. Biol. Chem.* **275**: 35692–35698

80 Jimenez M. A., Punzon C. and Fresno M. (1999) Induction of cyclooxygenase-2 on activated T lymphocytes: regulation of T cell activation by cyclooxygenase-2 inhibitors. *J. Immunol.* **163**: 111–119

81 Rossi Paccani S., Boncristiano M., Olivieri C., D'Elios M. M., Del Prete G. and Baldari C. T. (2002) Nonsteroidal anti-inflammatory drugs suppress T-cell activation by inhibiting p38 MAPK induction. *J. Biol. Chem.* **277**: 1509–1513

82 Pouliot M., Baillargeon J., Lee J. C., Cleland L. G. and James M. J. (1997) Inhibition of prostaglandin endoperoxide synthase-2 expression in stimulated human monocytes by inhibitors of p38 mitogen-activated protein kinase. *J. Immunol.* **158**: 4930–4937

83 Jang B. C., Sanchez T., Schaefers H. J., Trifan O. C., Liu C. H., Creminon C. et al. (2000) Serum withdrawal-induced post-transcriptional stabilization of cyclooxygenase-2 mRNA in MDA-MB-231 mammary carcinoma cells requires the activity of the p38 stress-activated protein kinase. *J. Biol. Chem.* **275**: 39507–39515

84 Cantrell D. T. (1996) cell antigen receptor signal transduction pathways. *Annu. Rev. Immunol.* **14**: 259–274

85 Acuto O. and Cantrell D. (2000) T cell activation and the cytoskeleton. *Annu. Rev. Immunol.* **18**: 165–184

86 Romagnani S. (2000) T-cell subsets (Th1 versus Th2). *Ann. Allergy Asthma Immunol.* **85**: 9–18

87 Betz M. and Fox B. S. (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. *J. Immunol.* **146**: 108–113

88 Snijderswint F. G., Kalinski P., Wierenga E. A., Bos J. D. and Kapsenberg M. L. (1993) Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. *J. Immunol.* **150**: 5321–5329

89 Hilkens C. M., Vermeulen H., van Neerven R. J., Snijderswint F. G., Wierenga E. A. and Kapsenberg M. L. (1995) Differential modulation of T helper type 1 (Th1) and T helper type 2 (Th2) cytokine secretion by prostaglandin E2 critically depends on interleukin-2. *Eur. J. Immunol.* **25**: 59–63

90 van der Pouw Kraan T. C., Boeije L. C., Smeenk R. J., Wijdenes J. and Aarden L. A. (1995) Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. *J. Exp. Med.* **181**: 775–779

91 Wu C. Y., Wang K., McDyer J. F. and Seder R. A. (1998) Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. *J. Immunol.* **161**: 2723–2730

92 Kuroda E., Sugiura T., Okada K., Zeki K. and Yamashita U. (2001) Prostaglandin E2 up-regulates macrophage-derived

chemokine production but suppresses IFN-inducible protein-10 production by APC. *J. Immunol.* **166**: 1650–1658

93 Tanaka K., Ogawa K., Sugamura K., Nakamura M., Takano S. and Nagata K. (2000) Cutting edge: differential production of prostaglandin D2 by human helper T cell subsets. *J. Immunol.* **164**: 2277–2280

94 Fujitani Y., Kanaoka Y., Aritake K., Uodome N., Okazaki-Hatake K. and Urade Y. (2002) Pronounced eosinophilic lung inflammation and Th2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. *J. Immunol.* **168**: 443–449

95 Mazzeo D., Panina-Bordignon P., Recalde H., Sinigaglia F. and D'Ambrosio D. (1998) Decreased IL-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF- κ B. *Eur. J. Immunol.* **28**: 3205–3213

96 Parker C. W., Huber M. G. and Godt S. M. (1995) Modulation of IL-4 production in murine spleen cells by prostaglandins. *Cell. Immunol.* **160**: 278–285

97 Perez-Santos J. L. and Talamas-Rohana P. (2001) In vitro indomethacin administration upregulates interleukin-12 production and polarizes the immune response towards a Th1 type in susceptible BALB/c mice infected with *Leishmania mexicana*. *Parasite Immunol.* **23**: 599–606

98 Li J., Padigel U. M., Scott P. and Farrell J. P. (2002) Combined treatment with interleukin-12 and indomethacin promotes increased resistance in BALB/c mice with established *Leishmania major* infections. *Infect Immun.* **70**: 5715–5720

99 Hirai H., Tanaka K., Yoshie O., Ogawa K., Kenmotsu K., Takamori Y. et al. (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. *J. Exp. Med.* **193**: 255–261

100 Brown D. M., Warner G. L., Ales-Martinez J. E., Scott D. W. and Phipps R. P. (1992) Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. *Clin. Immunol. Immunopathol.* **63**: 221–229

101 Mastino A., Piacentini M., Grelli S., Favalli C., Autuori F., Tentori L. et al. (1992) Induction of apoptosis in thymocytes by prostaglandin E2 in vivo. *Dev. Immunol.* **2**: 263–271

102 Pica F., Franzese O., D'Onofrio C., Bonmassar E., Favalli C. and Garaci E. (1996) Prostaglandin E2 induces apoptosis in resting immature and mature human lymphocytes: a c-Myc-dependent and Bcl-2-independent associated pathway. *J. Pharmacol. Exp. Ther.* **277**: 1793–1800

103 Porter B. O. and Malek T. R. (1999) Prostaglandin E2 inhibits T cell activation-induced apoptosis and Fas-mediated cellular cytotoxicity by blockade of Fas-ligand induction. *Eur. J. Immunol.* **29**: 2360–2365

104 Saigh S., Rigal D. and Monier J. C. (1994) Effects of PGE2 upon differentiation and programmed cell death of suspension cultured CD4-CD8- thymocytes. *Int. J. Immunopharmacol.* **16**: 775–786

105 Baixeras E., Garcia-Lozano E. and Martinez-A. C. (1996) Decrease in cAMP levels promoted by CD48-CD2 interaction correlates with inhibition of apoptosis in B cells. *Scand. J. Immunol.* **43**: 406–412

106 Brown D. M. and Phipps R. P. (1996) Bcl-2 expression inhibits prostaglandin E2-mediated apoptosis in B cell lymphomas. *J. Immunol.* **157**: 1359–1370

107 Harris S. G. and Phipps R. P. (2001) The nuclear receptor PPAR γ is expressed by mouse T lymphocytes and PPAR γ agonists induce apoptosis. *Eur. J. Immunol.* **31**: 1098–1105

108 Harris S. G., Smith R. S. and Phipps R. P. (2002) 15-deoxy-Delta 12,14-PGJ2 induces IL-8 production in human T cells by a mitogen-activated protein kinase pathway. *J. Immunol.* **168**: 1372–1379

109 Padilla J., Kaur K., Cao H. J., Smith T. J. and Phipps R. P. (2000) Peroxisome proliferator-activated receptor-gamma agonists and 15-deoxy-Delta(12,14)(12,14)-PGJ(2) induce apoptosis in normal and malignant B-lineage cells. *J. Immunol.* **165**: 6941–6948

110 Yamakawa-Karakida N., Sugita K., Inukai T., Goi K., Nakamura M., Uno K. et al. (2002) Ligand activation of peroxisome proliferator-activated receptor γ induces apoptosis of leukemia cells by down-regulating the c-myc gene expression via blockade of the Tcf-4 activity. *Cell. Death Differ.* **9**: 513–526

111 Mori N., Inoue H., Yoshida T., Tanabe T. and Yamamoto N. (2001) Constitutive expression of the cyclooxygenase-2 gene in T-cell lines infected with human T cell leukemia virus type I. *Int. J. Cancer* **96**: 813–819

112 Portis T., Harding J. C. and Ratner L. (2001) The contribution of NF- κ B activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors. *Blood* **98**: 1200–1208

113 Bellosillo B., Pique M., Barragan M., Castano E., Villamor N., Colomer D. et al. (1998) Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chronic lymphocytic leukemia cells. *Blood* **92**: 1406–1414

114 Wu M., Lee H., Bellas R. E., Schauer S. L., Arsura M., Katz D. et al. (1996) Inhibition of NF- κ B/Rel induces apoptosis of murine B cells. *EMBO J.* **15**: 4682–4690

115 Arsura M., Wu M. and Sonenschein G. E. (1996) TGF beta 1 inhibits NF- κ B/Rel activity inducing apoptosis of B cells: transcriptional activation of I κ B alpha. *Immunity* **5**: 31–40

116 Kopp E. and Ghosh S. (1994) Inhibition of NF- κ B by sodium salicylate and aspirin. *Science* **265**: 956–959

117 Hall V. C. and Wolf R. E. (1997) Effects of tenidap and nonsteroidal antiinflammatory drugs on the response of cultured human T cells to interleukin 2 in rheumatoid arthritis. *J. Rheumatol.* **24**: 1467–1470

